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Abstract
The phase diagram of a biased graphene bilayer is computed and the existence of a
ferromagnetic phase is discussed both in the critical on-site interaction Uc versus doping density
and versus temperature. We show that in the ferromagnetic phase the two planes have unequal
magnetization and that the electronic density is hole-like in one plane and electron-like in the
other. We give evidence for a first-order phase transition between paramagnetic and
ferromagnetic phases induced by doping at zero temperature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene, a two-dimensional hexagonal lattice of carbon
atoms, has attracted considerable attention due to its
unusual electronic properties, characterized by massless Dirac
fermions [1–3]. It was first produced via micromechanical
cleavage on top of a SiO2 substrate [4, 5] and its hallmark is
the half-integer quantum Hall effect [6, 7].

In addition to graphene, few-layer graphene can also
be produced. Of particular interest to us is the double-
layer graphene system, where one encounters two carbon
layers placed on top of each other according to the usual
Bernal stacking of graphite (see figure 1). The low energy
properties of this so-called bilayer graphene are then described
by massive Dirac fermions [8]. These new quasi-particles have
a quadratic dispersion close to the neutrality point and have
recently been identified in quantum Hall measurements [9] and
in Raman spectroscopy [10, 11].

In a graphene bilayer it is possible to have the two
planes at different electrostatic potentials [12, 13]. As a
consequence, a gap opens up at the Dirac point and the low
energy band acquires a Mexican hat relation dispersion [14].
This system is called a biased graphene bilayer. The potential
difference created between the two layers can be obtained
by applying a back gate voltage to the bilayer system and
covering the exposed surface with some chemical dopant,

Figure 1. The unit cell of a graphene bilayer in the Bernal stacking.
The dashed hexagons are on top of the solid ones. The unit cell
vectors have coordinates a1 = a(3,

√
3)/2 and a2 = a(3, −√

3)/2.

such as, for example, potassium [12] or NH3 [13]. In
addition, it is also possible to control the potential difference
between the layers by using back and top gate set-ups [15].
The opening of the gap at the Dirac point in the biased
bilayer system was demonstrated both by angle-resolved
photoemission experiments (ARPES) [12] and Hall effect
measurements [13]. The electronic gap in the biased system
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has also been observed in epitaxially grown graphene films on
SiC crystal surfaces [16].

Due to the Mexican hat dispersion relation the density
of states close to the gap diverges as the square root of the
energy. The possibility of having an arbitrary large density
of states at the Fermi energy poses the question whether
this system can be unstable toward a ferromagnetic ground
state. The question of magnetism in carbon-based systems
already has a long history. Even before the discovery of
graphene, highly oriented pyrolytic graphite (HOPG) has
attracted broad interest due to the observation of anomalous
properties, such as magnetism and insulating behavior in the
direction perpendicular to the planes [17–21]. The research
of s–p-based magnetism [22–24] was especially motivated by
the technological use of nanosized particles of graphite, which
show interesting features depending on their shape, edges and
applied field of pressure [25].

Microscopic theoretical models of bulk carbon magnetism
include nitrogen–carbon compositions where ferromagnetic
ordering of spins could exist in π -delocalized systems due to
a lone electron pair on a trivalent element [26] or intermediate
graphite–diamond structures where the alternating sp2 and sp3

carbon atoms play the role of different valence elements [27].
More general models focus on the interplay between disorder
and interaction [28, 29]. Further, midgap states due to
zigzag edges play a predominant role in the formation
of magnetic moments [30, 31] which support flat-band
ferromagnetism [32–34]. A generic model based on midgap
states was recently proposed in [35, 36]. Magnetism is also
found in fullerene-based metal-free systems [37]. For a recent
overview on metal-free carbon-based magnetism see [38].

To understand carbon-based magnetism in graphite, one
may start with the simplest case of one layer, i.e. graphene.
Because the density of states of intrinsic graphene vanishes at
the Dirac point, the simple Stoner-like argument predicts an
arbitrary large value of the Coulomb on-site energy needed
to produce a ferromagnetic ground state [39, 40]. In fact,
because of the vanishing density of states, the Coulomb
interaction is not screened and the Hubbard model is not a
good starting point to study ferromagnetism in clean graphene.
One, therefore, has to consider the exchange instability of the
Dirac gas due to the bare, long-range Coulomb interaction
in two dimensions. This study shows that, for a clean,
doped or undoped graphene layer, a spin polarized ground
state due to the gain of exchange energy is only favorable
for unphysical values of the dimensionless coupling constant
of graphene [41]. The paramagnetic ground state of clean
graphene is thus stable against the exchange interaction. If
the system is disordered, e.g. due to vacancies or edge states,
a finite density of states builds up at the Dirac point. As
a consequence, a finite Hubbard interaction for driving the
system to a ferromagnetic ground state is obtained [42]. In this
case, the exchange interaction favors a ferromagnetic ground
state for reasonable values of the dimensionless coupling
parameter [41]. The presence of itinerant magnetism due
to quasi-localized states induced by single-atom defects in
graphene, such as vacancies [43], has also been obtained
recently using first principles [44].

The situation is quite different in a bilayer system. There,
a finite density of states exists at the neutrality point producing
some amount of screening in the system. Moreover, in the case
of a biased bilayer and for densities close to the energy gap,
the density of states is very large, producing very effective
screening. As a consequence, for this system the Hubbard
model is a good starting point to study the tendency toward
ferromagnetism. From the point of view of the exchange
instability of the bilayer system, it is found that the system is
always unstable toward a ferromagnetic ground state for low
enough particle densities [45–47].

In the present paper, we want to explore the fact that
the Hubbard model is a good starting point to describe the
Coulomb interactions in the regime where the Fermi energy
is close to the band edge of the biased bilayer system. In
particular we want to study the phase diagram of the system
as a function of the doping. We further want to determine the
mean field critical temperature.

This paper is organized as followed. In section 2, we
introduce the model and define the mean field decoupling
which allows for different electronic density and magnetization
in the two layers. In section 3, we set up the mean field
equations and present the numerical results in section 4. We
close with conclusions and future research directions.

2. Model Hamiltonian and mean field approximation

The Hamiltonian of a biased bilayer Hubbard model is the
sum of two pieces H = HTB + HU , where HTB is the tight-
binding part and HU is the Coulomb on-site interaction part
of the Hamiltonian. The tight-binding Hamiltonian is itself
a sum of four terms describing the tight-binding Hamiltonian
of each plane, the hopping term between the planes and the
electrostatic bias applied to the two planes. We therefore have

HTB =
2∑

ι=1

HTB,ι + H⊥ + HV , (1)

with

HTB,ι = −t
∑

R,σ

[a†
ισ (R)bισ (R) + a†

ισ (R)bισ (R − a1)

+ a†
ισ (R)bισ (R − a2) + H.c.], (2)

H⊥ = −t⊥
∑

R,σ

[a†
1σ (R)b2σ (R) + b†

2σ (R)a1σ (R)], (3)

and

HV = V

2

∑

R,σ

[na1σ (R)+nb1σ (R)−na2σ (R)−nb2σ (R)]. (4)

As regards the bias term in equation (4), we assume here that V
can be externally controlled and is independent of the charge
density in the system. This situation can be realized with a back
and top gate set-up [15]. The on-site Coulomb part is given by

HU = U
∑

R

[na1↑(R)na1↓(R) + nb1↑(R)nb1↓(R)

+ na2↑(R)na2↓(R) + nb2↑(R)nb2↓(R)], (5)
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where nxισ (R) = x†
ισ (R)xισ (R), with x = a, b, ι = 1, 2 and

σ = ↑,↓.
The problem defined by the Hamiltonian HTB + HU

cannot be solved exactly and therefore we have to rest upon
some approximation. Here we adopt a mean field approach,
neglecting quantum fluctuations. Since we are interested in
studying the existence of a ferromagnetic phase we have to
introduce a broken symmetry ground state. There is, however,
an important point to make: since the two planes of the bilayer
are at different electrostatic potentials one should expect that
the electronic density and the magnetization will not be evenly
distributed among the two layers. Therefore our broken
symmetry ground state must take this aspect into account. As
a consequence we propose the following broken symmetry
ground state:

〈nx1σ (R)〉 = n + �n

8
+ σ

m + �m

8
, (6)

and

〈nx2σ (R)〉 = n − �n

8
+ σ

m − �m

8
, (7)

where n is the density per unit cell and m = n↑ − n↓ is the
spin polarization per unit cell. The quantities �n and �m
represent the difference in the electronic density and in the
spin polarization between the two layers, respectively3. We
note that m and �m are independent parameters, it being in
principle possible to have a ground state where m = 0 but
�m �= 0.

When transformed to momentum space the mean field
Hamiltonian obtained from the above is

HMF =
∑

k,σ

�
†
k,σ Hk,σ�k,σ

− NcU

32
[(n + �n)2 − (m + �m)2]

− NcU

32
[(n − �n)2 − (m − �m)2], (8)

with �
†
k,σ = [a†

1kσ , b†
1kσ , a†

2kσ , b†
2kσ ] and Hk,σ given by

Hk,σ =
⎛

⎜⎝

sσ −tφk 0 −t⊥
−tφ∗

k sσ 0 0
0 0 pσ −tφk

−t⊥ 0 −tφ∗
k pσ

⎞

⎟⎠ , (9)

with sσ = V
2 + ( n+�n

8 − σ m+�m
8 )U , pσ = − V

2 + ( n−�n
8 −

σ m−�m
8 )U and φk = 1+eik·a1 +eik·a2 . The energy eigenvalues

are given by

E j,l
σ (k, m,�m) =

(n

8
− σ

m

8

)
U

+ l

2

√
2t2

⊥ + V 2
σ + 4t2|φk|2 + j2

√
t4
⊥ + 4t2(t2

⊥ + V 2
σ )|φk|2,

(10)

where l, j = ± and Vσ is given by

Vσ = V + U�ñ − σU�m̃, (11)

3 Assuming equal spin densities in sublattices A and B of the same layer is a
reasonable approximation for t⊥ 
 t .

Figure 2. Brillouin zone of the bilayer problem. The Dirac point K

has coordinates 2π(1,
√

3/3)/(3a) and the M point has coordinates
2π(1, 0)/(3a).

where we have introduced the definitions �n = 4�ñ and
�m = 4�m̃. It is clear that, as long as �n and �m are finite,
the system has an effective Vσ that differs from the bare value
V . The momentum values are given by

k = m1

N
b1 + m2

N
b2, (12)

with m1, m2 = 0, 1, . . . , N − 1, the number of unit cells given
by Nc = N2, and b1 and b2 given by

b1 = 2π

3a
(1,

√
3), b2 = 2π

3a
(1,−√

3). (13)

The Brillouin zone of the system is represented in figure 2.

3. Free energy and mean field equations

The free energy per unit cell, f , of the Hamiltonian (8) is given
by

f = −kBT

Nc

∑

k,σ

∑

l, j=±
ln

(
1 + e−(El, j

σ (k)−μ)/(kBT )
)

− U

16

[
n2 − m2 + (�n)2 − (�m)2

] + μn, (14)

where μ is the chemical potential.
Let us introduce the density of states per spin per unit cell

ρ(E) defined as

ρ(E) = 1

Nc

∑

k

δ(E − t|φk|). (15)

The momentum integral in equation (15) is over the Brillouin
zone defined in figure 2, using the momentum definition (12).
The integral can be performed, leading to

ρ(E) = 2E

t2π2

⎧
⎪⎪⎨

⎪⎪⎩

1√
F(E/t)

K
(

4E/t

F(E/t)

)
, 0 < E < t,

1√
4E/t

K
(

F(E/t)

4E/t

)
, t < E < 3t,

(16)

3
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where F(x) is given by

F(x) = (1 + x)2 − (x2 − 1)2

4
, (17)

and K(m) is defined as

K(m) =
∫ 1

0
dx[(1 − x2)(1 − mx2)]−1/2. (18)

Using equation (15), the free energy in equation (14) can
be written as a one-dimensional integral:

f = −kBT
∑

σ

∑

l, j=±

∫
dEρ(E)

× ln
(

1 + e−(El, j
σ (E)−μ)/(kBT )

)

− U

16

[
n2 − m2 + (�n)2 − (�m)2

] + μn. (19)

The mean field equations are now obtained from the
minimization of the free energy (19). The doping, δn, relative
to the situation where the system is at half-filling is defined as

δn =
∑

σ

∑

l, j=±

∫
dEρ(E) f [El, j

σ (E) − μ] − 4, (20)

where f (x) = (1 + ex/(kB T ))−1. The spin polarization per unit
cell obeys the mean field equation:

m =
∑

σ

∑

l, j=±
σ

∫
dEρ(E) f [El, j

σ (E) − μ]. (21)

The difference in the electronic density between the two layers
is obtained from

�ñ = 1

2

∑

σ

∑

l, j=±1

∫
dEρ(E) f [El, j

σ (E) − μ]vl, j
σ (E), (22)

where v
l, j
σ (E) is given by

vl, j
σ (E) = l

2

Vσ√
. . .

⎛

⎝1 + j4E2

√
t4
⊥ + 4E2(t2

⊥ + V 2
σ )

⎞

⎠ , (23)

and

√
. . . =

√
2t2

⊥ + V 2
σ + 4E2 + j2

√
t4
⊥ + 4E2(t2

⊥ + V 2
σ ).

(24)
The difference in the magnetization between the two layers is
obtained from

�m̃ = 1

2

∑

σ

∑

l, j=±1

σ

∫
dEρ(E) f [El, j

σ (E) − μ]vl, j
σ (E).

(25)
Let us now assume that the system supports a

ferromagnetic ground state whose magnetization vanishes at
some critical value Uc at zero temperature. Additionally we
assume that �m = 0 when m = 0, which will be shown to

be the case in this system. The value of Uc is determined from
expanding (21) to first order in m, leading to

1 = Uc

4

∑

l, j=±1

∫
dEρ(E)δ[El, j

σ (E, 0, 0) − μ]

= Uc

4

∗∑

l, j,k=±1

ρ(E∗
k )

| f ′
l, j (E∗

k )|
θ(3t − E∗

k )θ(E∗
k )

= Uc

4
ρb(μ̃, Uc) = Ucρ̃b(μ̃, Uc), (26)

where ρb(μ̃, Uc) is the density of states per unit cell per spin
for a biased bilayer at the energy μ̃ = μ − nUc/8 and
ρ̃b(μ̃, Uc) is the density of states per spin per lattice point.
Although equation (26) looks like the usual Stoner criterion
the fact that the bias Vσ given in equation (11) depends on
U due to the difference in the electronic density �n makes
equation (26) a nonlinear equation for Uc which must be solved
self-consistently. For low doping δn the product Uc�ñ is a
small number when compared to V and therefore it can be
neglected in equation (11). In this case equation (26) reduces
to the usual Stoner criterion:

Uc � 1/[ρ̃b(μ̃)]. (27)

The quantities E∗
k in equation (26) are the roots of the delta

function argument:

El, j
σ (E∗

k ) − μ = 0. (28)

The quantity f ′
l, j (E∗

k ) is the derivative in order to the energy E
of equation (28) evaluated at the roots E∗

k . The roots E∗
k are

given by

E∗
k = 1

2

√
4μ̃2 + V 2

σ + k2
√

4μ̃2(t2
⊥ + V 2

σ ) − t2
⊥V 2

σ , (29)

with k = ±. Equation (28) cannot be solved for all bands: the
existence of a solution is determined by μ. As a consequence
we added the ∗ symbol in the summation of equation (26),
which means that only bands for which equation (28) can
be solved (two at the most) contribute to the summation. It
also means that for the contributing bands only real roots in
equation (29) are taken into account to the summation. The
number of real roots in equation (29) depends on the particular
band μ through equation (28). The function f ′

l, j (E) is given
by

f ′
l, j (E) = 2l E√

. . .

⎛

⎝1 + j
t2
⊥ + V 2

σ√
t4
⊥ + 4E2(t2

⊥ + V 2
σ )

⎞

⎠ . (30)

It is clear that both roots are imaginary for μ̃ in the range

− t⊥Vσ

2
√

t2
⊥ + V 2

σ

< μ̃ <
t⊥Vσ

2
√

t2
⊥ + V 2

σ

, (31)

which means that the system has an energy gap of value

�g = t⊥Vσ√
t2
⊥ + V 2

σ

. (32)

We finally note that since we have assumed �m = 0, Vσ does
not effectively depend on σ .

4
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Figure 3. (a) Density of states ρ(μ̃) per unit cell per spin of the bilayer problem with U = 0. (b) Zoom of (a) near the gap region. (c) Critical
value Uc for ferromagnetism in the low doping, δn, regime. (d) The same as in (c) as a function of doping. The parameters are t = 2.7 eV,
t⊥ = 0.2t and V = 0.05 eV. The edge of the gap is located at �g/(2t) � 0.009 22.

4. Results and discussion

We start with the zero temperature phase diagram in the plane
U versus δn. An approximate analytic treatment is possible in
this limit, which is used to check our numerical results. The
effect of temperature is considered afterward.

4.1. Zero temperature

4.1.1. Approximate solution. In figure 3 we represent the
density of states of a biased bilayer with U = 0 together with
the low doping critical value Uc, as given by equation (27). In
panel (b) of figure 3 a zoom-in of the density of states close to
the gap is shown. It is clear that the density of states diverges at
the edge of the gap. As a consequence the closer to the edge of
the gap the chemical potential is, the lower will be the critical
Uc value. This quantity is shown in panel (c) of figure 3 as
a function of the chemical potential μ̃ and in panel (d) as a
function of doping δn. The lowest represented value of Uc is
about Uc � 2.7 eV to which corresponds an electronic doping
density δn � 2.5 × 10−5 electrons per unit cell. The step-like
discontinuity shown in panels (c) and (d) for Uc occurs when
the Fermi energy equals V/2, signaling the top of the Mexican
hat dispersion relation.

It is clear from panel (d) of figure 3 that in the low doping
limit Uc is a linear function of doping δn. This limit enables
us to find an approximate analytic treatment which not only
explains the linear behavior but also provides a validation test
of our numerical results. Firstly we note that for very low
doping the density of states in equation (27) is close to the
gap edge, |μ̃| ∼ �g/2, where �g is the size of the gap
equation (32). In this energy region the density of states has

a 1D-like divergence, [14] behaving as

ρb(μ̃) ∝ 1√|μ̃| − �g/2
. (33)

Using this approximate expression to compute the doping,
δn ∝ sgn(μ̃) × ∫ |μ̃|

�g/2 dx ρb(x), we immediately get δn ∝
sgn(μ̃)/ρb(μ̃) and thus Uc ∝ |δn|. In order to have an analytic
expression for Uc in the low doping limit we have to take into
account the proportionality coefficient in equation (33). After
some algebra it can be shown that the density of states per spin
per lattice point near the gap edge can be written as

ρb(μ̃) ≈ 1

t24π2

√
�g(t2

⊥ + V 2)

F(χ)
K

(
4χ

F(χ)

)
1√|μ̃| − �g/2

,

(34)
where χ = [(�2

g + V 2)/(4t2)]1/2, with F(x) and K(m) as in
equations (17) and (18). The doping δn, measured with respect
to half-filling in units of electrons per unit cell, can be written
as

δn = sgn(μ̃) × 8
∫ |μ̃|

�g/2
dx ρb(x)

≈ 4

t2π2

√
�g(t2

⊥ + V 2)

F(χ)
K

(
4χ

F(χ)

) √
|μ̃| − �g/2. (35)

Inserting equation (34) into equation (27), and taking into
account equation (35), we are able to write

Uc ≈ t4π4 F(χ)

�g(t2
⊥ + V 2)

[
K

( 4χ

F(χ)

)]−2

δn. (36)

In panel (d) of figure 3 both the numerical result of
equation (27) and the analytical result of equation (36) are
shown. The agreement is excellent.

5
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Figure 4. Panels (a), (b), and (c) show the zero temperature self-consistent solution for m, �m and �n, respectively. The zero temperature
phase diagram of the biased bilayer in the U versus δn plane is shown in panel (d). Symbols in panel (d) are inferred from panel (a) and signal
a first-order phase transition; the solid (equation (26)) and dashed (equation (36)) lines stand for a second-order phase transition. The constant
parameters are V = 0.05 eV, t⊥ = 0.2t and t = 2.7 eV.

4.1.2. Self-consistent solution. We now need to solve the
mean field equations in order to obtain the zero temperature
phase diagram of the biased bilayer. In order to achieve this
goal we study how m, �m and �n depend on the interaction
U for given values of the electronic doping δn.

In panel (a) of figure 4 it is shown how m depends on U
for different values of δn. The chosen values of δn correspond
to the chemical potential being located at the divergence of the
low energy density of states. The lower the δn is, the closer to
the gap edge is the chemical potential and therefore the larger
the density of states is. As a consequence, m presents a smaller
critical Uc value for smaller δn values. It is interesting to
note that the magnetization saturation values correspond to full
polarization of the doping charge density with m = δn, also
found within a one-band model [46]. In panel (b) of figure 4
we plot the �m mean field parameter. Interestingly the value
of �m vanishes at the same Uc as m. For finite values of m we
have �m > m, which means that the magnetization of the two
layers is opposite. We therefore have two ferromagnetic planes
that possess opposite and unequal magnetization. In panel (c)
of figure 4 we show the value of �n as a function of U . It
is clear that |δn| < |�n|, which implies that the density of
charge carriers is above the Dirac point in one plane and below
it in the other plane. This means that the charge carriers are
electron-like in one plane and hole-like in the other.

In panel (d) of figure 4 we show the phase diagram of the
system in the U versus δn plane. Symbols are inferred from
the magnetization behavior in panel (a). They signal a first-
order phase transition when m increases from zero to a finite
value (see panel (a)). The full (red) line is the numerical self-
consistent result of equation (26) and the dashed (blue) line is
the approximate analytic result given by equation (36). The
discrepancy between lines and symbols has a clear meaning.

In order to obtain both equations (26) and (27) we assumed
that a second-order phase transition would take place, i.e.
the magnetization m would vanish continuously when some
critical Uc is approached from above. This is not the case, and
the system undergoes a first-order phase transition for smaller
U values than those for the second-order phase transition
case. There are clearly two different regimes in panel (d) of
figure 4: one at densities lower than δn � 1 × 10−4, where the
dependence of δn on Uc is linear, and another regime for δn >

1 × 10−4 where a plateau-like behavior develops. This plateau
has the same physical origin as the step-like discontinuity
we have seen in panels (c) and (d) of figure 3. Clearly, as
the density δn grows the needed value of Uc for having a
ferromagnetic ground state increases. This is a consequence of
the diverging density of states close to the gap edge. As regards
the limit δn → 0 it is obvious from panel (d) of figure 4 that
we have Uc → 0. It should be noted, however, that lowering
the density δn leads to a decrease of m and �m, as can be seen
in panels (a) and (b) of figure 4. Therefore, even though we
have Uc → 0 in the limit δn → 0, we have also m → 0 and
�m → 0, which implies a paramagnetic ground state for the
undoped (δn = 0) biased bilayer. Only �n remains finite at
zero doping, in agreement with the observations that screening
is still possible at the neutrality point (δn = 0) [48, 13, 49].

So far we have analyzed the system for fixed values of
the bias voltage, V , and interlayer coupling, t⊥. In figure 5
we show the effect of the variation of these two parameters
on the zero temperature phase diagram. In panel (a) we have
fixed the interlayer coupling, t⊥ = 0.2t , and varied the bias
voltage, V (eV) = {0.01, 0.05, 0.1}; in panel (b) we did the
opposite, with V = 0.05 eV and t⊥/t = {0.05, 0.1, 0.2}.
Essentially, raising either V or t⊥ leads to a decrease of the
critical interaction, Uc, needed to establish the ferromagnetic
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Figure 5. Effect of t⊥ and V on the zero temperature Uc versus δn phase diagram: (a) fixed t⊥ = 0.2t and varying V ; (b) fixed V = 0.05 eV
and varying t⊥. For a given δn the ferromagnetic phase establishes for U > Uc and the paramagnetic phase for U < Uc.

Figure 6. Hartree–Fock bands for up (full lines) and down (dashed
lines) spin polarizations. Three different cases are considered (from
left to right): U < Uc, U � Uc and U � Uc.

phase for a given δn. The order of the transition, however,
remains first order: for a given δn, the critical interaction
Uc predicted by equation (26), which is valid for a second-
order phase transition, is always higher than what is obtained
by solving self-consistently the mean field equations, meaning
that a first-order transition is occurring at a lower Uc. It is
interesting to note that the effect of V and t⊥ on the first-
order critical Uc line is similar to what is expected for the usual
Stoner criterion, where increasing either V or t⊥ gives rise to
an increase in the density of states at the Fermi level and a
lower Uc thereof.

The bias voltage and the interlayer coupling also
have interesting effects on the magnetization, m, and spin
polarization difference between layers, �m. Decreasing t⊥
leads to a decrease in �m, and below some t⊥ we have �m <

m, as opposed to the case discussed above (V = 0.05 eV and
t⊥ = 0.2t). In particular, for V = 0.05 eV, we have already
found �m < m for t⊥ � 0.1t . A similar effect has been
observed when V is increased. For t⊥ = 0.2t we have found
�m < m for V � 0.1 eV. It should be noted, however,
that m and �m are U -dependent. Increasing U leads m to
saturate while �m keeps growing, as can be seen in panels (a)
and (b) of figure 4 for the particular case of V = 0.05 eV
and t⊥ = 0.2t . This means that, depending on the value
of the parameters V and t⊥, we can go from �m < m to

�m > m just by increasing the interaction strength U . It
can also be seen in panel (a) of figure 4 that m is completely
saturated at the transition for δn < δnc ≈ 6 × 10−5 electrons
per unit cell, while for δn > δnc it saturates only at some
U > Uc. Even though this behavior seems to be general
for any V and t⊥, the value of δnc is not. In particular, we
have found δnc to depend strongly on V —it seems to vary
monotonically with V , increasing when V increases. Let us
finally comment on the effect of V and t⊥ on the charge
imbalance between planes, �n. Irrespective of V and t⊥ we
have always observed |δn| < |�n|, which means that charge
carriers are always electron-like in one plane and hole-like in
the other. As expected, increasing/decreasing either V or t⊥
leads to an increase/decrease of �n.

4.1.3. Understanding the asymmetry between planes. The
asymmetry between planes regarding both charge and spin
polarization densities can be understood based on the Hartree–
Fock bands shown in figure 6. The figure stands for V =
0.05 eV and t⊥ = 0.2t , but can easily be generalized for other
parameter values.

It should be noted firstly that in the biased bilayer the
weight of the wavefunctions in each layer for near-gap states
is strongly dependent on their valence band or conduction
band character [13, 48, 49]. Valence band states near the gap
have their amplitude mostly localized on layer 2, due to the
lower electrostatic potential −V/2 [see equation (4)]. On the
other hand, near-gap conduction band states have their highest
amplitude on layer 1, due to the higher electrostatic potential
+V/2 for this layer (see equation (4)).

The case U < Uc shown in figure 6 (left) stands for the
paramagnetic phase. The values m = 0 and �m = 0 seen in
this phase are an immediate consequence of the degeneracy of
up and down spin polarized bands. The presence of a finite gap,
however, leads to the above-mentioned asymmetry between
near-gap valence and conduction states. As a consequence,
a half-filled bilayer would have n2 = (4 + �n)/2 electrons
per unit cell on layer 2 (electron-like charge carriers) and
n1 = (4 − �n)/2 electrons per unit cell on layer 1 (hole-like
charge carriers), with �n �= 0. Even though the system studied
here is not at half-filling, as long as |δn| < |�n| the carriers on
layers 1 and 2 will still be hole-and electron-like, respectively.
Note that, as U is increased, the charge imbalance �n is

7
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Figure 7. Panels (a), (b) and (c) show the finite temperature self-consistent solution for m, �m and �n, respectively, with temperature
measured in K. The finite temperature phase diagram of the biased bilayer in the U versus T plane is shown in panel (d). The constant
parameters are V = 0.05 eV, t⊥ = 0.2t , t = 2.7 eV and δn = 0.000 05 e−/unit cell.

suppressed in order to reduce the system Coulomb energy, as
can be seen in panel (c) of figure 4. From the band structure
point of view a smaller �n is the result of a smaller gap �g,
which means that increasing U has the effect of lowering the
gap.

Let us now consider the case U � Uc shown in figure 6
(center). The degeneracy lifting of spin polarized bands gives
rise to a finite magnetization, m �= 0. Interestingly enough, the
degeneracy lifting is only appreciable for conduction bands,
as long as U is not much higher than Uc. This explains
why the total polarization m and the difference in polarization
between layers �m have similar values, m ≈ �m, as shown
in panels (a) and (b) of figure 4—as only conduction bands
are contributing to �m, the spin polarization density is almost
completely localized in layer 1, where m1 = (m + �m)/2 ≈
m, while the spin polarization in layer 2 is negligible, m2 =
(m − �m)/2 ≈ 0.

It is only when U � Uc that valence bands become non-
degenerate, as seen in figure 6 (right). This implies that near-
gap valence states with up and down spin polarization have
different amplitudes in layer 2. As the valence band for down
spin polarization has a lower energy the near-gap valence states
with spin down have higher amplitude in layer 2 than their spin
up counterparts. Consequently, the magnetization in layer 2
is effectively opposite to that in layer 1, i.e. �m > m. This
can be observed in panels (a) and (b) of figure 4, where as
U is increased the magnetization of the two layers becomes
opposite.

We note, however, that the cases U � Uc and U �
Uc mentioned above are parameter-dependent. For instance,
the valence bands can show an appreciable degeneracy lifting
already for U � Uc, especially for small values of the t⊥
parameter (t⊥ � 0.05t). In this case the magnetization of the
two layers is no longer opposite, with �m < m. This can be

understood as due to the fact that as t⊥ is decreased the weight
of near-gap wavefunctions becomes more evenly distributed
between layers, leading not only to a decrease in �n but also
in �m. As U is further increased the energy splitting between
up and down spin polarized bands gets larger, enhancing �m.
For U � Uc, and depending on the parameters V and t⊥, the
magnetization of the two layers may become opposite even for
small t⊥ values.

4.2. Finite temperature

Next we want to describe the phase diagram of the bilayer in
the temperature versus on-site Coulomb interaction U plane.
This is done in figure 7 for a charge density δn = 5 × 10−5

electrons per unit cell. For temperatures ranging from zero to
T = 1.1 K we studied the dependence of m, �m and �n on the
Coulomb on-site interaction U . First we note that the minimum
critical value Uc is not realized at zero temperature. There is
a re-entrant behavior which is signaled by the smallest Uc for
T = 0.06±0.02 K. For temperatures above T ≈ 0.1 K we have
larger Uc values for the larger temperatures, as can be seen in
panel (a). The same is true for �m, panel (b). As in the case of
figure 4, the value of �m, at a given temperature and U value,
is larger than m. Also the value of �n, shown in panel (c), is
larger than δn. Therefore we have the two planes presenting
opposite magnetization and the charge carriers being hole-like
in one graphene plane and electron-like in the other plane. In
panel (d) of figure 7 we present the phase diagram in the T
versus U . Except at very low temperatures, there is a linear
dependence of T on Uc. It is clear that at low temperatures,
T � 0.2 K, the value of Uc is smaller than the estimated values
of U for carbon compounds [50, 51].
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4.3. Disorder

A crucial prerequisite in order to find ferromagnetism is a
high DOS at the Fermi energy. The presence of disorder will
certainly cause a smoothing of the singularity in the DOS and
the bandgap renormalization, and can even lead to the closing
of the gap. We note, however, that for small values of the
disorder strength the DOS still shows an enhanced behavior
at the bandgap edges [52, 53]. The strong suppression of
electrical noise in bilayer graphene [54] further suggests that in
addition to a high crystal quality—leading to remarkably high
mobilities [55]—an effective screening of random potentials is
at work. Disorder should thus not be a limiting factor in the
predicted low density ferromagnetic state, as long as standard
high quality bilayer graphene samples are concerned.

Let us also comment on the next-nearest interlayer
coupling γ3, which in the unbiased case breaks the spectrum
into four pockets for low densities [8]. In the biased case, γ3

still breaks the cylindrical symmetry, leading to the trigonal
distortion of the bands, but the divergence in the density of
states at the edges of the bandgap is preserved [53]. Therefore,
the addition of γ3 to the model does not qualitatively change
our result.

5. Summary

We have investigated the tendency of a biased bilayer graphene
towards a ferromagnetic ground state. For this, we used
a mean field theory which allowed for a different carrier
density and magnetization in the two layers. We have found
that in the ferromagnetic phase the two layers have unequal
magnetization and that the electronic density is hole-like in one
plane and electron-like in the other. We have also found that, at
zero temperature, where the transition can be driven by doping,
the phase transition between paramagnetic and ferromagnetic
phases is first order.
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[40] Araújo M A N and Peres N M R 2006 J. Phys.: Condens.
Matter 18 1769

[41] Peres N M R, Guinea F and Castro Neto A H 2005 Phys. Rev. B
72 174406

[42] Peres N M R, Guinea F and Castro Neto A H 2006 Phys. Rev. B
73 125411

[43] Pereira Vitor M, Guinea F, Lopes dos Santos J M B,
Peres N M R and Castro Neto A H 2006 Phys. Rev. Lett.
96 036801

[44] Yazyev Oleg V and Helm L 2007 Phys. Rev. B 75 125408
[45] Nilsson J, Castro Neto A H, Peres N M R and Guinea F 2006

Phys. Rev. B 73 214418
[46] Stauber T, Peres N M R, Guinea F and Castro Neto A H 2007

Phys. Rev. B 75 115425

[47] Castro E V, Peres N M R, Stauber T and Silva N A P 2008
Phys. Rev. Lett. 100 186803

[48] McCann Edward 2006 Phys. Rev. B 74 161403
[49] Min H, Sahu B R, Banerjee S K and MacDonald A H

2007 Phys. Rev. B 75 155115
[50] Parr R G, Craig D P and Ross I G 1950 J. Chem. Phys. 18 1561
[51] Baeriswyl D, Campbell D K and Mazumdar S 1986 Phys. Rev.

Lett. 56 1509
[52] Nilsson J and Castro Neto A H 2007 Phys. Rev. Lett.

98 126801
[53] Nilsson J, Castro Neto A H, Guinea F and Peres N M R 2007

Preprint 0712.3259v2 [cond-mat.mes-hall]
[54] Lin Y-M and Avouris P 2008 Phys. Rev. B 78 045405
[55] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F,

Elias D, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett.
100 016602

10

http://dx.doi.org/10.1103/PhysRevB.70.195122
http://dx.doi.org/10.1088/0953-8984/18/5/028
http://dx.doi.org/10.1103/PhysRevB.72.174406
http://dx.doi.org/10.1103/PhysRevB.73.125411
http://dx.doi.org/10.1103/PhysRevLett.96.036801
http://dx.doi.org/10.1103/PhysRevB.75.125408
http://dx.doi.org/10.1103/PhysRevB.73.214418
http://dx.doi.org/10.1103/PhysRevB.75.115425
http://dx.doi.org/10.1103/PhysRevLett.100.186803
http://dx.doi.org/10.1103/PhysRevB.74.161403
http://dx.doi.org/10.1103/PhysRevB.75.155115
http://dx.doi.org/10.1063/1.1747540
http://dx.doi.org/10.1103/PhysRevLett.56.1509
http://dx.doi.org/10.1103/PhysRevLett.98.126801
http://arxiv.org/abs/0712.3259v2
http://dx.doi.org/10.1103/PhysRevB.78.041402
http://dx.doi.org/10.1103/PhysRevLett.100.016602

	1. Introduction
	2. Model Hamiltonian and mean field approximation
	3. Free energy and mean field equations
	4. Results and discussion
	4.1. Zero temperature
	4.1.1. Approximate solution.
	4.1.2. Self-consistent solution.
	4.1.3. Understanding the asymmetry between planes.

	4.2. Finite temperature
	4.3. Disorder

	5. Summary
	Acknowledgments
	References

